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J. Phys. A: Gen. Phys., 1970, Vol. 3. Printedin Great Britain 

Perturbation of relativistic bootstraps 

M. R. WALLACE? 
School of Mathematical and Physical Sciences, University of Sussex, Falmer, 
Brighton, Sussex, England 
MS.  receiced 12th Febvuary 1970 

Abstract. This paper reports the investigation of two problems : (i) the possi- 
bility of bootstrapping boundstate scalar and vector mesons from scalar con- 
stituents, in an off-shell model, utilizing the direct interaction theory of 
Bakamjian and Thomas, and then (ii) the effect of applying a linear perturbation 
procedure to the masses and coupling constants of these solutions. In (i) the 
Lippmann-Schwinger formalism and an approximate form of crossing sym- 
metry are used to obtain expressions for the bound-state residues, giving 
solutions to both the scalar and vector cases with properties in excellent agree- 
ment with Bethe-Salpeter and N / D  dispersion results of other workers. In 
(ii) we calculate the relative contributions of the ‘driving-term’ and ‘feedback’ 
mechanisms. In the S-wave case we find that the attractive perturbation 
increases the binding of the bound state, but in the P-wave case, treated with a 
cut-off, we obtain a ‘sign-reversal’ of the mass-shift arising from the ‘feedback’. 

1. Introduction 
I n  the bootstrap approach to v-n- systems, one is accustomed to both the N / D  

formalism of Chew and Mandelstam (1961), Zachariasen (1961), Zachariasen and 
Zemach (1962), and to the approximation methods of the Bethe-Salpeter equation 
in, for example, Kaufmann (1968). In  this paper, however, we adopt a third approach 
which commends itself by virtue of the ease and speed with which numerical computa- 
tions can be carried out. 

We use the relativistic direct-interaction formalism of Bakamjian and Thomas 
(1953), and exploit it via an off-shell equation developed by Fong and Sucher (1964). 
We consider scalar and vector bootstraps and take as the constituent particles scalar 
or pseudoscalar mesons. The  potentials are provided by a (S = 0, T = 0) exchange 
in the S-wave case and p (S = 1, T = 1) exchange in the P-wave, determined by the 
leading Feynmann diagrams. (We ignore contributions from other channels.) 

We employ the Lippmann-Schwinger formalism to obtain an expression for the 
residue of the T-matrix pole corresponding to the bound state, and then use an 
approximate form of crossing-symmetry to obtain an expression for the coupling 
constant of this bound state. I n  the P-wave case, we employ a sharp cut-off to avoid 
the divergence arising from spin 1 exchange. (This method of controlling the diver- 
gence is common to many models and we refer to Contogouris et al. 1967 for a 
discussion of the underlying philosophy.) 

I n  both the S- and P-wave case we find two self-consistent solutions, one deeply 
bound and the other lightly bound. (The P-wave solutions are of course cut-off 
dependent .) 

The  existence of S-wave solutions is perhaps surprising since no bound or low- 
energy resonant a-particle (T = 0, L = 0) apparently exists in nature, but work of 
Kaufmann (1968) with a Bethe-Salpeter equation confirms the heavier solution to 
within 5%. (Isospin for the S-wave case is ignored here and in Kaufmann.) 

t Present address: 12A Elm Bank Mansions, The  Terrace, Barnes, London SW13. 
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In  the P-wave state of r-r, the p-meson is of course a resonance in nature, but we 
have been able to pull it into the bound-state region by decreasing the cut-off down 
to values around the pion mass; the reason for pulling the p out of its physically 
interesting area is that, in the perturbation procedure which follows, we limit ourselves 
to considering bound-state structures only. 

2. The dynamical equation 
Bakamjian and Thomas (1953) have formulated a relativistic theory which, instead 

of resorting to field operators, is based on a relativistic Schrodinger equation. 
The Hamiltonian A is a linear operator in a two-particle Hilbert space spanned by 

plane-wave states Ip,, p z ) .  For the case of two spinless particles of mass p1 and p2 
the general form of H is 

with 
A = ((A)’ + (&}1/’ 

and 
h = E,(B)+E,(k)+ D 

E@) = (pL12+p2)1/2 i = 1,2. 

The interaction operator P introduced in this manner leaves the ten generators of 
the proper inhomogeneous Lorent: group still satisfying the usual commutation 
relations of that group. Note that K is simply the three-momentum of particle 1 in 
the instantaneous centre of momentum system. For details of the Bakamjian-Thomas 
formalism we refer the reader to Bakamjian and Thomas (1953) and Fong and Sucher 
(1964). Fong and Sucher (1964) show that the B-T Hamiltonian defines a covariant 
S-matrix. 

In  this paper we are concerned with bound states and for this case we follow the 
treatment of Son and Sucher (1967) writing 

Hyb,Q Eb(Q) yb,Q (1) 
where Yb,Q describes a bound state of mass mb and three-momentum Q ,  and where 

Eb(Q) = (mb’ f Q’)”’* 
h A 

Introducing simultaneous eigenstates IK, P )  of K and P as a basis in Z,  we 
define a wave function $b(k) using 

< K ,  p l y b , Q )  = Q )  $b(K). 

Inserting a complete set of states into equation (1) and putting IQ I = 0 gives 

(EI.(K) + E d K )  - m b } $ b ( K )  = - V ( K ,  K ’ )  $ b ( K ’ )  d3K’ 

where 

and 
V ( K ,  K ’ )  = ( K [  P I K ’ )  

j I$b(K)12 dK = 

With V(K,  K ’ )  invariant under rotations we have 

V ( K ,  K’) = 2 (Z+&)  V,(K, K ’ )  P,(Iz.  R’) 
2 
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with 
1 

V,(k ,  k’) = 1 V(k,  k’; x) Pl(x) dx. 
-1 

For a bound state of angular momentum I we set 

+dK) = +dk) yLm(@ 
which after a little algebra gives us the equation 

where 

and 

(2E,(k) - w ~ ~ } + ~ ( k )  = - 2n J Vl(k ,  k’) +l(k’)k’2 dk’ 
0 

11.1 = P2 = Pn 

E,(K) = E2(K)  = E,  = (pz2+K2)1’2 .  

507 

(2) 

(3) 

Equation (3) is the central equation of our model. We now turn to the problem 

We introduce the Lippmann-Schwinger formalism for the T-matrix, namely 
of determining the potential V(K,  K ) .  

T = V+VGV 
where 

G =  
1 

(223, - H + i8)  

and H is the B-T Hamiltonian of the last section. T is related to the S-matrix via 

Si‘ = 8‘ - 2ni8(Pi - Pf)Tif .  

3. Case 1. S-wave 
For the S-wave bound state we consider the exchange of a neutral scalar particle U 

between two non-identical n-mesons. For simplicity, we shall ignore (in this S-wave 
case) the isospin of real pions. See figure 1. 

Figure 1. o-exchange graph. 

We use the suffix on uin to distinguish the exchanged mass from the bound state 

For the effective Lagrangian at each vertex we use 
mb = uOut to be introduced presently. 
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T o  leading order, the T-matrix is given by 

where 
A = {(E-E’), ( K - K ’ ) )  

and the E, E‘  factors derive from the usual external line normalization. 
Putting G = 2p,gnaa and using the Born approximation to the scattering amplitude, 

i.e. 

we obtain 

Using equation (2)  to project out the l = 0 partial wave gives 

For the bound state we put mb = uOut and enforcing the bootstrap condition 
gives 

Equation (3) is now 

ain = Uout  = U. 

m 
(2E,- 0) &(k) = - 2 ~  1 Vo(k, k’, 5)  +0(k’ )k’2  dk’. (4) 

0 

We solve this equation by numerical methods on the computer (see Appendix 1 
for details), putting hi, = g2/4.rr, setting pn = 1 once and for all and writing 
equation (4) as 

A i n - h j o  = 92& 

where 
for with U in the range 0 < U < 2. This provides us with a plot of A,, against U. 

is the eigenvalue of the operator &. The  lowest value of A,, is sought 

These bound states now manifest themselves as poles in the T-matrix such that 
for 

1 c;= 
2 E , - H + i b  

and HYb = ay,, i.e. HIB) = alB)  we can write near the pole 

The  residue of the pole gives 

~ e s  ~ o ( k ,  0, bin) = 1 <K/plB>liE,=o* 

Knowing hi, and r$o for each U gives Res To for each U. 
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Note 

(KI p1B) = j V ( K ,  K' )  +b(K') d3K' 

where [KI is fixed by cr2 = 4(k2+ 1). 

form of crossing symmetry. 
We constrain the continuous set of solutions for 0 by appealing to an approximate 

If M is the invariant scattering amplitude such that in the region of the pole 

then 
M = 32n3En2T. 

Under crossing s+-+ t and putting A,,, = g2/4n = G2/16n gives 

Res MO($, t )  = 87r3a2 Res To. 
With equation ( 5 )  this provides us finally with 

A,,, = n2cr31 (Kipiq2,En=,.  
Plotting A,,, and Ai, against cr gives the curves shown in figure 2. 

ul!& 
Figure 2. A ; ,  (curve A) and A,,, (curve B) against u/pn. 

For the bootstrap we must have 

hi, = A,,, = h 

i.e. the self-consistent scalar bootstrap solutions are the intersections of the curves A,, 
and A,,,. 

It will be noticed that Aout -+ 0 as cr,,, -f 2, in agreement with the non-relativistic 
zero-range approximation for S-waves. We have checked numerically that the stan- 
dard formula is satisfied by our solutions. 
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For the lightly bound solution we have 

h2 = 9.88 312 i: 0.00 005 
02 = 1.718 070 i 0.000 005. 

Solution 2 

Comparing with other models we quote the result of Kaufmann (1968) using a 
Schwinger variational method and the Bethe-Salpeter equation. Kaufmann obtains 

h = 9-42 
cr = 1.76. 

This agrees with the above solution to within 5%.  What we would expect, 
a priori, is close but not exact agreement, since the physics is the same but the mathe- 
matics is somewhat different. 

For the strongly bound solution we find 

A 1  = 6.235 i: 0.005 
01 = 0.136 I: 0*005. 

Solution 1 

Although we have ignored isospin in this S-wave case we note some numerical 
coincidences in our solutions. In  Solution 2 the values of A, and cr2 differ from 7~~ and 
(e- 1) by one part in 1000 and two parts in 17 000 respectively, where e is the base 
of the natural logarithm, and if in Solution 1 we put pn = 139.6 MeV we obtain 
crl = 19.00i: 0.68 MeV. This is to be compared with cr = 19.57 MeV quoted by 
Aron (1968) in a scheme which generates the I = 0, Y = 0 particles as simply 
m = no where n is an integer. We refer to his paper for details. 

4. Case 2. P-wave 
Experiment confirms a strong resonant behaviour in ~ i - r  scattering around 

760 MeV. This p-meson is of course a resonance but we hope to pull it into the 
bound-state region (in preparation for the perturbation calculation) by suitable 
adjustment of the cut-off parameter. That  we anticipate success in this venture is 
based on the work of other workers, e.g. Contogouris et al. (1967), who use an N / D  
model with a left-hand discontinuity defined by the exchange of a vector meson. 
Using a sharp cut-off to suppress the distant part, they obtain a set of solutions from 
just above threshold to mp2 E 30pn2 where the cut-off A is given by 1 1pn2 < 11 6 Sopn’. 

We therefore expect to obtain solutions below threshold for values of il < 1 1pn2. 
The P-wave analysis follows similar lines to the S-wave case and so we shall only 

dwell on points of divergence from that case. 

5. P-wave analysis and results 
We consider two pseudoscalar T = 1 pions with an attractive T = 1, J = 1 force 

(the p-meson) generating, we hope, the same T = 1, J = 1 p-meson as a bound state. 
The  effective interaction at each vertex is 

= ignnpgijkPn’jafi7Tk 

where i , j ,  k are isotopic indices. The  polarization vector E/, of the p satisfies 

U a’41 2 EWEy = g, - - 
P 01 P2 
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with 

T o  leading order in the scattering and taking as before, the Born approximation 
to the 5”-matrix gives - 

AiII‘ (E+E’)Z+(K+K’)2 
V ( K ,  K ‘ )  = -~ 

8n2EE’ [ (K-K’)2+pin2 

The  coupling constants satisfy SU(2)  so that 

1 1 ”  

-3 

Tj 

2”‘ = A,, ( f + -i 1 {l+(- l ) i+z)  

c; 

where I is the isospin of the external particles and I’ is the isospin of the exchanged 
particle. 

Projecting out the 1 = 1 partial wave gives the P-wave potential: 

where 
k 2 + k f 2 + p i n 2  - C A = -  

2kk’ 

Putting mb = pout in equation (3) gives 
m 

(2E,-pOut) q51(K) = -27i 1 V,(h ,  k ’ )  q51(k’)k’2 dk‘. 
0 

Inspection shows that the kernel of this equation, with V,(k, A’)  inserted, is not 
Fredholm, so we write 

VI(/$, K ’ )  + @ ( A - k )  V,(k,  k ’ )  @(A-K’) 

Here il has the dimensions of mass. 
As in the S-wave case we calculate the lowest value of Xi, for each pin = pout = p. 

The ,+.?-matrix is given as 
The  P-wave residue is given by the analogue of equation (5). 
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Under crossing s t) t 

and projecting out the 1 = 1 wave, gives for the residue of the T-matrix 

g2q2 
1 ~ ~ 3 ~ 3  

Res Tl(s, t )  = - - 

where q = (1 - p2/4)1’2. We finally obtain for A,,,( = g2/4n) the expression 

Aout -- - - 3T3p3 (1; V,(A,,, k = iq, k’)k’* +,(k’) dk’ 
q2 

Plotting Aout and A,, against p, we look for bootstrap solutions A,, = Xout = X 
in the cut-off range 1 < A < 15. 

Within this range we find a deeply bound solution analogous to the S-wave 
situation, but the second, more lightly bound solution, does not appear at threshold 
( p  = 2.0) until A is reduced to the value of 3-30. This agrees very well with the first 
resonant solution of Contogouris et al. (1967) with their values of p = 2.04, A = 3.30. 
With A:= 1 we obtain figure 3. 

P IPn 

Figure 3. hi, (curve A) and &ut (curve B) against p/pn. 

The agreement with the above workers provides a very satisfying result, showing 
that their N / D  dispersion-theoretical model and our off-shell model are evidently 
dealing, with similar adequacy, with similar physics. 



Perturbation of relativistic bootstraps 513 

6. Introduction to the perturbation problem 
With these scalar and vector bootstrap bound states we now proceed to investigate 

the effect of applying a small perturbation to the masses and coupling constants. Our 
interest in doing this centres on discerning two separate effects. The  first is the direct 
effect of the applied external perturbation on the eigenvalue, i.e. the mass: we shall 
call this the 'driving-term'. The  second effect concerns the response of the strong 
interaction itself to the presence of the perturbation; this effect manifests itself in a 
further contribution to the mass shift, and we shall refer to this as the 'feedback effect'. 
We shall be interested in comparing the differences (should there be any) in the scalar 
and vector cases. 

For the mass shift of the ith particle we can write under perturbation 

where the Ai j  are 'feedback' coefficients registering the response of the strong inter- 
action to the perturbation, and the DY the driving terms describing the direct effect 
of this perturbation. 

Since we have considered bootstrapped a and p particles, the sums in equation (7 )  
contain only one term, namely 

The  sign of 8Mi obviously depends upon the signs of Div and the feedback coefficients 
A?; and Ayr. The controversy over the neutron-proton mass difference, for example, 
has centred partly on whether the positive sign for M,-M, is due to the driving 
terms or the feedback effects. For references see Dashen and Frautshi (1964) and 
Barton (1966). 

In  equation (8) what sign do we expect AY? to have? 
This term measures the effect on the bound state resulting from a change in the 

mass of the exchanged particle responsible for the strong interaction. 
i.e. 

ound mass A M " -  dmb i b = = "  
dm, e = exchanged. 

For the S-wave potential, transcribed into coordinate space in an obvious non- 
relativistic limit, we have 

qy) 2: - g2 ~ X P (  - oiny) 

4irr 
For 

we obtain 
me = uIn -+ a,,+ hi, 

g2 
SV(r) + - exp( - ul,r)8u,,. 

4%- 

This is everywhere positive and therefore repulsive for all Y. This decreases the 
binding so that mb( = uOut) would be expected to increase, and we would expect 

> 0. L4MM = duout 
doin 
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For the P-wave potential we have 

g2 V(Y) N - (8k2 + 4pn2 +Pin2) exp( -Piny) 

4E2 (a(')- 4T Y 

With me = pin -+ pin+ Spin, and neglecting S(Y) (since &(Y) = 0 at Y = 0), we find 

For large Y, SV(r) is positive and therefore repulsive but, at small Y, 6 V(Y) is negative, 
causing attraction. The  effect on mb (= pout) now depends on how strongly the state 
is bound. (See also Kayser 1967.) 

If p is strongly bound, q51(~) is effectively confined near the origin and there it will 
feel directly the attractive part of SV. For p lightly bound, however, +l(r) will have 
a long tail and will respond also to the repulsive part of SV. 

The sign of AMM = dp,,,/dpin must therefore await explicit calculation. 
The results we shall obtain are 

M M  S-wave A, = $0.60 

P-wave A:: = +1-16. 
We shall find that the P-wave is almost cut-off-independent for our bound 

Since AfF > 1 we have (1 - Afy )  < 0, providing a mechanism for changing 
solutions. 

the sign of the mass shift as dictated by the driving term. 

7. Perturbation formalism 

framework. 
We now turn to the perturbation procedure within the Bakamjian-Thomas 

We recall from equation (1) the Bakamjian-Thomas operator 

where 
h = 2E(k)+ P 

E(@ = (22+pn2)1 '2 .  

Under the application of a small perturbation 6Vc we obtain 

and 

where N' is the new normalization constant. 

inhomogeneous integral equation for 84, whose solution is our aim. 
Remembering that h j y )  = mbIY) and (KIT) = +b(K) = +,Yy we obtain an 

o,S+1 6mb - ahin 7; - yk - 7:. (9) 
In  equation (9), Ut is the homogeneous operator satisfying o,+, = 0 and the 

yk (functions of the form (KISPIY)) are obtained by using 
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I n  order to solve equation (9) we need expressions for 6m and SA-the shifts in 
the masses and coupling constants. For the first we use the unitarity relation 
(+I+) = 1 and the bootstrap relation 6m, = am, = 6m giving 

Comparing with equation (8) we identify the driving term DF = (6V/,") and the 
feedback coefficients 

AiM: = (2)  

The second constraint we have is the relationship between the input and output 
residues of the bound-state poles, namely equations (5) and (6). For the purposes of 
differentiation, A,, and A,,, are kept distinct under the perturbation and then finally 
identified under the bootstrap condition SA,, = SA,,, = SA. This calculation of S A  
involves a lot of tedious algebra and for details refer to Wallace (1968); the form of 
6A finally obtained is 

6A = A, + B, 

(0, + m % = Sr 
w,+, = 0. 

(11) 

(12) 

With these expressions for Sm and 6A we can insert them into equation (9) giving 
us the equation 

where 

Since o,+L = 0, I,+ J& is a singular Hermitian operator and as such will only 
have solutions if (+,IQ,) = 0. 

For the proof of this assertion and the remaining details about the method of 
solving the inhomogeneous equation for S + , ,  the reader is referred to Appendix 2. 

S+, once obtained is inserted into equations (10) and (11) to give Sm and SA. 

8. Results 
For the perturbing potential we take the relativistic scalar exchange 

where E measures the strength of the perturbation (we are performing a calculation 
linear in a) ,  and where we explore the consequences of a range of exchanged 'photon 
masses' v. 

The S- and P-wave projections are simply 

The negative sign in equation (13) implies attraction. 
3 A  
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Invoking the formalism of the previous section and, in particular, equations (lo), 
(11) and (12)’ we calculate Sm and S X  for a range of ‘photon masses’ 

0 < v < 1 . 6 ~ ~ .  
For the S-wave the results are displayed in figures 4 and 5. 

v (units o f  p , J  
0 0.5 1.0 1.5 

1 1 I 1 

Figure 4. &/a (curve A) and 8h/h (curve B) against v. 

Lg(llu) 

Figure 5 .  6a/o (curve A) and 8h ih  (curve B) against Ig ( l i v ) ,  

For the ‘heavy-photon’ region, i.e. figure 4, the mass shift Scr/o is dominated by 

From equation (10) we can write 

6a N 

the negative (attractive) driving term resulting from direct ‘photon exchange’. 

(8 VOC ) 
(1 - (avojam, >J’ 

The  ‘feedback‘ term (8VO/2m,)  is calculated to be 

{aV,-,/am,> = 0.6 

so that Sa takes the same sign as (6Voc) (i.e. negative). 
For the mass of the ‘photon’ going to zero, i.e. figure 5, we obtain logarithmic 

behaviour, in an ‘infrared’ divergence, for both Solo and S X j X .  This infrared diver- 
gence enters the system via the coupling constant shift and the linear nature of the 
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perturbation procedure. What is surprising, however, is that the mass shift should also 
pick up this divergence. The  explanation lies in the self-bootstrapping nature of our 
bound-state model and is reflected in equation (lo), connecting 60 with 6X. 

For the P-wave we have the results of figures 6 and 7. 

0.2- 

0.1 

O 

- NX 
x HX 

I I I , i o  2.0 3.0 4.0 
lg ( 1  / V I  

-0.21 

Figure 6. 8 p / p  (curve A) and Figure 7.  8 p / p  (curve A) and 
8hjh (curve B) against Y. 8X/X (curve B) against lg (1,’~). 

I n  the P-wave bound-state the cut-off parameter A is A = 1pZ. 
We now observe in figure 6 that for the ‘heavy-photon’ exchange, the mass-shift 

S p / p  is still dominated by the driving term but takes the opposite sign. Writing 

where {aV,/am,> = 1.16 we have a ‘sign reversal’ in the mass shift coming from the 
effect of the perturbation on the strong interaction dynamics. 

I n  view of the fact that the feedback coefficient (aV,/am,> is a function of the 
cut-off A, it is an obvious question to ask whether the sign-reversal mechanism 
vanishes for some particular range of A. Surprisingly, calculation shows that 
( aV1/2me> is almost completely insensitive to A. 

Figure 7 shows the ‘infrared’ divergence for v -+ 0 as in the S-wave case. 

9. Conclusions 
We have demonstrated that, in the perturbation of bootstrapped scalar and vector 

bound-state mesons generated from a relativistic Schrodinger equation, the sign of 
the eventual change in the binding energy, with the same perturbing potential, 
depends crucially on the dynamical structure of the system. 
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Appendix 1. Computing remarks 
The mapping of all the I = 0 integrals is 

The  integral equation (4) then becomes 
1 

Ain-1X(Y) = j" k(Y, Y') ~ ( y ' )  dY'. 
- 1  

Use of Gaussian n-point quadratures leads to 

det (A-Aln-lI) = 0 

with A an n x n matrix A,, = 9??k(yt, y j ) .  
method. We then write 

and y ,  are chosen according to Gauss's 

n 

det (A-Aln-lI) = (A,,-l)n- 2 Pj(A,n-l)n-J = 0 

where the P, are calculated by the method of Leverrier-Faddeev (Fadeev and 
Fadeeva 1963). For the P-wave integrals the mapping is 

, = 1  

k = i A ( 1  + y ) ,  k h ( k )  = X(Y) 
the rest of the numerics being the same as above for the S-wave case. 

Appendix 2 

then the equation has solutions only if (+llQI> = 0. 
We prove that, if the operator ( ol + I%',) of equation (12) is singular and Hermitian, 

Proof 
Put 

where + denotes Hermitian. Then we have 

<dl I Ql ) = ( + l  I w&1845l>> 

= { (+l la> 1 %  ) 
= o since 1@7/+,) = o 

which was to be demonstrated. Detailed inspection of the Ql function shows that for 
all 'photon' masses we do indeed have (+1 1 Ql > F 0. Hence there is always a solution 
to equation (12) but it is not unique. We therefore calculate two independent solutions 
uI2 and u21 and write as a linear combination, namely 

854 = PlUl"(1  -Pl)u2z* 

Imposing the condition that (+118+1) = 0 we fix Pl uniquely. 
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